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Introduction
Nanotechnology applies engineering principles such as electronics 
and materials, as well as physical science, to fabricating materials 
at the molecular level, which can be devices, systems, or supra-
molecular structures with dimensions ranging from 0.1 to 100 nm. 
Nanotechnology has brought significant advances in medical ap-
plications, gene therapy, drug delivery, imaging, and techniques 
for new approaches to drug therapies.1,2 In terms of drug delivery, 
several nano-delivery systems for small molecules, proteins, and 
DNA have been developed. Physicochemical properties of nano-

structures allow them to cross cellular and tissue barriers, making 
them promising materials for biomedical applications.3 In the field 
of cancer research, the problems associated with therapeutic agents 
involve bioavailability, biodistribution, degradation, elimination, 
and elimination of the biological activity of nanoparticles and their 
structures.4

In addition, classical and target-directed drugs can kill both 
healthy and malignant cells, leading to strong side effects.5 Drug 
delivery mediated by nanoparticles represents an improvement 
over conventional methods, enhancing the selective delivery to 
the target cancer cells, which has already been achieved for sev-
eral chemotherapeutic drugs.6 There are still challenges related 
to nanodelivery of antitumor drugs concerning instability in the 
biological tract and loss of drugs due to rapid degradation. The 
tumor-targeting efficiency of nanoparticles is related to several 
physicochemical, biochemical, and biological features, and the in-
teraction with the cellular surface of the target cells is one of those.

The cellular uptake of nanoparticles is divided into endocy-
tosis-mediated internalization and direct intracellular entry. The 
first strategy involves endocytosis mediated by clathrin, caveolin, 
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phagocytosis, and macropinocytosis,7 while the direct intracellular 
entry involves lipid fusion and translocation.8 In addition, artifi-
cial strategies such as electroporation and microinjection achieve 
limited use due to induced deformation of the membrane struc-
ture and its destruction.9 Receptor-mediated endocytosis involves 
the interaction between surface receptor proteins of the cell with 
target molecules present on the nanoparticle surface. This inter-
action leads to the activation of the endocytic pathway, with the 
nucleation of cytosolic proteins within the nanoparticle entry 
site, generating a coated pit, followed by an invagination process 
that will create an intracellular vesicle carrying the nanoparticles 
(Fig. 1). There are five types of receptor-mediated endocytosis: 

clathrin-dependent endocytosis, clathrin-independent endocytosis 
(endophilin-mediated/dynamin-dependent and glycosylphosphati-
dylinositol-anchored protein-enriched endocytic compartment 
(GEEC), macropinocytosis, phagocytosis, and caveolin-dependent 
endocytosis.7 Clathrin is a protein involved in the formation of a 
polyhedral lattice in the cell membrane, which forms a coated cav-
ity as the membrane invaginates to create a vesicle during specific 
endocytic pathways.10 In clathrin-dependent endocytosis, the nan-
oparticles bind to cell membrane receptors, e.g., epidermal growth 
factor receptors. After the formation of the clathrin-coated cavity 
consisting of receptor-bound nanoparticles within the cavity and 
the invagination of the cell membrane, the cell membrane’s break-

Fig. 1. Nanoparticles endocytosis – In receptor-mediated endocytosis NPs ligands are recognized by cell receptors activating the endocytic pathway, what 
occurs for clathrin, caveolin, fast endophilin mediated endocytosis, CLIC/GEEC and phagocytosis, while macropinocytosis is not initiated by the binding 
of specific cargo molecules to receptors on the cell surface. Instead, it involves the non-selective uptake of extracellular fluid and its contents through the 
formation of large membrane structures and subsequent engulfment. After internalization the NPścargo can be released through endosomal or lysosomal 
escape. CLIC, clathrin-independent carriers; GEEC, glycosylphosphatidylinositol-anchored protein-enriched endocytic compartment; NPs, nanoparticles.
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down forms an intracellular vesicle able to entrap nanoparticles 
of ∼100 nm in size.11 The endocytosed nanoparticles are then ex-
tracted from the vesicles, where they can reach their target.

In caveolin-mediated endocytosis, this protein that generates 
the coated vesicles also follows receptor-mediated binding of 
nanoparticles, generating flask-shaped membrane invaginations 
known as caveolae.12 Both clathrin- and caveolin-mediated endo-
cytosis need to constrict and cut the plasma membrane to gener-
ate the intracellular vesicles. Dynamin, a GTPase, is thought to 
perform this role by forming spiral polymers. Even though there 
are several works showing that this is true for clathrin,13 serious 
doubts have been raised regarding dynamin’s role in caveolin-me-
diated endocytosis.14

Clathrin- and caveolin-independent endocytosis (Fig. 1) utilizes 
lipid rafts, structures composed of cholesterol and sphingolipids 
found in the cell membrane, which are capable of being endocy-
tosed.15 Endophilin-mediated endocytosis is initiated by cell sur-
face ligand-receptor interaction and is modulated by endophilin 
A2 recruitment and actin polymerization. The cutting of the mem-
brane neck to generate the vesicles is also dependent on dynamin.11 
GEEC endocytosis, on the other hand, is clathrin- and dynamin-
independent, utilizing extracellular galectin proteins, glycopro-
teins, and glycolipids for vesicle formation and loading. GEEC 
endocytic vesicles are capable of transporting cargo up to 100 nm 
in size, whereas vesicles formed during the endophilin-mediated/
dynamin-dependent endocytosis pathway transport cargo approxi-
mately 60–80 nm in size.11

Phagocytosis of nanoparticles can be instigated through inter-
action with receptors of phagocytic cells such as polymorphonu-
clear neutrophils, monocytes, and macrophages, but also by non-
professional phagocytes, such as Fc receptors and complement 
receptors.16,17 Phagocytosis can be utilized for the cellular uptake 
of larger cargoes, typically exceeding 200 nm, and can therefore 
facilitate the uptake of larger nanoparticles.11 Components of the 
immune system, such as immunoglobulins and complement pro-
teins, are responsible for identifying and removing nanoparticles 
by phagocytes through opsonization and adsorption onto the na-
noparticle surface. When nanoparticles are phagocytosed, they 
are contained in phagosome vesicles that, in turn, fuse with a 
lysosome, thus forming the phagolysosome. On the other hand, 
macropinocytosis is not initiated by the binding of specific cargo 
molecules to receptors on the cell surface. Instead, it involves the 
non-selective uptake of extracellular fluid and its contents through 
the formation of large membrane structures mediated by actin 
filaments and subsequent engulfment of the molecules interacting 
with the cell membrane.18

Once nanoparticles are endocytosed, the endocytic vesicle be-
comes the early endosomal compartment that matures into a late 
endosome that fuses with the lysosome. Due to the enzymatic na-
ture of the lysosomal content, this may lead to degradation of the 
nanoparticle cargo, reducing therapeutic efficiency. To reduce this 
effect and ensure the delivery of active therapeutic cargo, a com-
mon strategy is an event called lysosomal escape, which uses the 
proton sponge effect, where nanoparticles induce an influx of ions 
into the lysosome, leading to swelling and rupture.19 Other strat-
egies include pH-sensitive linkers that degrade under the acidic 
conditions of the lysosome, favoring the release of therapeutics 
into the cytoplasm; and the addition of peptides that promote fu-
sion with the lysosomal membrane and subsequent release of the 
drug.20 On the other hand, if the cargo is released from the endo-
some into the cytoplasm (endosomal escape), the release of the 
cargo from nanoparticles in the cytosol results in intact therapeutic 

release, maintaining its bioactivity.21

In addition to the engineered synthetic nanoparticles that pos-
sess their own advantages and drawbacks (Fig. 2), this technol-
ogy also takes advantage of nanoparticles of natural origin, such 
as viral nanoparticles (VNPs). As with synthetic nanoparticles, 
VNPs are also subject to endocytic pathway entry. In particular, 
virus-like particles (VLPs) (a subgroup of VNPs) have become a 
versatile platform that can be explored to solve a variety of prob-
lems that arise with the use of synthetic nanocarriers, including 
biocompatibility and sharper targeting of tumor cells. This class 
of nanoparticles also has its own issues regarding drug delivery, 
encapsulation, scalability, stability, and immune response. Studies 
on the application of both synthetic and natural nanoparticles to 
treat tumors where conventional and targeted therapy have failed 
have been increasing at an exponential rate. This review addresses 
the combination of several nanocarriers with different therapeutic 
strategies to improve the anticancer response of patients, discusses 
the main drawbacks, and the innovative solutions to achieve maxi-
mum efficiency.

Cancer
Cancer is a major public health problem worldwide and is one of 
the most prevalent malignant diseases that cause morbidity and 
mortality.22 Traditional methods of cancer treatment include sur-
gical resection, chemotherapy, and radiotherapy. Immunotherapy 
and photothermal therapy have also emerged recently.23,24 Chemo-
therapeutic drugs have several types of mechanisms, including af-
fecting the chemical structure of DNA, inhibiting nucleic acid syn-
thesis, acting on nucleic acid transcription and DNA replication, 
and interfering with mitotic tubulin synthesis.25 However, these 
drugs do not distinguish between healthy and malignant cells, 
leading to side effects during treatment. In addition, conventional 
drugs for this type of treatment have several problems, such as 
drug solubility in aqueous media, biodistribution, short half-life, 
and the resistance of these drugs over time.26

Several types of nanoparticles, including liposomes, polymeric 
nanoparticles (PNPs), solid lipid nanoparticles (SLNs), dendrim-
ers, silica-based materials, and magnetic nanoparticles, constitute 
an improvement in drug delivery to cancer cells, increasing treat-
ment efficacy and minimizing side effects.27 Thus, the binding of 
these drugs to nanoparticles currently presents great advantages, 
such as targeting the drug to the proper tumor cell (active target-
ing). Active targeting utilizes molecular recognition: ligands, such 
as aptamers or monoclonal antibodies, are conjugated to nano-
carriers, enabling them to specifically bind to receptors that are 
overexpressed on the surface of cancer cells. This effect enables 
the administration of the medication to be more precise and re-
duces unwanted side effects. On the other hand, passive target-
ing leverages the enhanced permeability and retention effect,28 a 
consequence of the fact that tumor vasculature tends to be leaky 
and lacks adequate lymphatic drainage, allowing nanoparticles, 
such as liposomes or polymeric micelles, to accumulate more eas-
ily in tumor tissues than in healthy tissues. We can combine both 
strategies, with passive targeting ensuring that nanocarriers reach 
the general tumor area, while active targeting enhances targeting 
down to the cellular level.28 We have several examples, such as in 
the case of achieving selective drug accumulation in tumor tissues 
through antibody-mediated binding, like monoclonal antibodies 
(trastuzumab) that can guide nanoparticles to human epidermal 
growth factor receptor-2 (HER2)-positive breast cancer cells,29 or 
even the evolution of cancer-targeting therapies (the development 
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of Accurins), which are programmable nanoparticles containing a 
therapeutic load, grafted with a ligand targeting the extracellular 
domain of prostate-specific membrane antigen, designed to target 
tumors at three levels: tissue, cellular, and molecular.30 There are 
approximately 14 drugs with nanoparticles approved by the U.S. 
Food and Drug Administration for clinical use, the majority of 
which are in the liposome matrix. These nanoparticles are more 
efficient vehicles for transport and targeted delivery in a hydropho-
bic manner without provoking an immune response.31

Anticancer drugs are generally lipophilic and behave well with-
in the trapped vesicles, being protected from external reactions.32 
Nanoparticles associated with anticancer drugs act on angiogen-
esis mechanisms, uncontrolled cell proliferation, and increased 
tumor mass,33 affecting only tumor tissues and reducing multid-
rug resistance.34 The issue of endocytosis of these tumor cells by 
these drugs through nanoparticles is an important factor because 
it reduces the dispersion of the drug outside the cancer cell and 
can increase the therapeutic potential of the drug.35 In addition to 
drugs, nanoparticles can be loaded with peptides, proteins, nucleic 
acids, and antibodies, improving their pharmacokinetics.36 There 
are several challenges for nanoparticles in cancer therapy; among 
them are the proper delivery and accumulation at the target site and 
decreased accumulation at off-target sites, problems addressed by 
those who study the improvement of drug delivery systems.

Nanocarriers in drug-delivery systems for cancer treatment
In the development of nanocarriers (biodegradable or non-biode-
gradable), the drugs are enveloped, adsorbed, or encapsulated in 
the nanoparticle matrix and can be prepared in several ways with 
distinct drug-release properties and characteristics (Fig. 2).

Liposomes
These nanocarriers were the first to be tested as drug carriers. They 
are spherical vesicles composed of phospholipids and steroids. 
They may have a bilayer or even surfactants formed when some 
lipids are dispersed in an aqueous medium and can be prepared 
by sonication.37 Liposomes increase the solubility of drugs and 
improve their pharmacokinetic properties, such as the therapeutic 
index of chemotherapeutic agents, rapid metabolism, and reduc-
tion of harmful side effects.38 The drug is incorporated into the 
liposome via an encapsulation process, and its release depends on 
several factors, such as the composition of the liposome, pH, and 
osmotic gradient.38 The interactions between liposomes and cells 
are mediated by adsorption, fusion, and endocytosis. Several li-
posomal formulations are available for anticancer drugs such as 
cisplatin,38 as well as for other conditions, which use liposomal 
formulations with neurotransmitters,39 antibiotics,40 anti-inflam-
matories,41 and antirheumatics.42

Nanoparticles based on solid lipids
SLNs, nanostructured lipid carriers, and lipid drug conjugates 
(LDCs) are carrier systems based on a solid lipid matrix.43 They 
have been used in dermal,44 parenteral,45 ocular,46 pulmonary,47 
and rectal administration.48 SLNs are particles made of solid lipids, 
e.g., highly purified triglycerides, complex mixtures of glycerides, 
or waxes stabilized by various surfactants.38,49 They are character-
ized by good physical stability, drug-degradation protection, and 
controlled drug release. However, they have a low drug-loading 
capacity due to low drug solubility in the lipid. Nanostructured 
lipid carriers and LDCs are modifications of lipid-based nanopar-
ticles that were developed to overcome the limitations of conven-
tional SLNs, such as low drug-loading capacity, and LDCs were 

Fig. 2. Types of nanoparticles (NPs) for use in drug delivery, as well as its advantages and disadvantages. 
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developed for lipophilic drug delivery.43 SLN has been extensively 
studied for application in the treatment of triple-negative breast 
cancer using docetaxel.50,51

Polymeric nanoparticles
PNPs are structures with a diameter ranging from 10 to 100 nm. 
They are obtained from various synthetic polymers, such as poly-
acrylamide and polyacrylate,52,53 or even from natural polymers, 
for example, albumin,54 DNA,55 chitosan,55 and gelatin.56 PNPs 
can be classified as biodegradable—poly(L-lactide),57 and polyg-
lycolide,58 and non-biodegradable, such as polyurethane.59 PNPs 
have a structure coated with non-ionic surfactants to minimize 
immunological interactions, as well as molecular interactions be-
tween surface chemical groups such as van der Waals forces and 
hydrogen bonds.60 Drugs can be immobilized on the surface of 
PNPs or encapsulated and released into the target tissue by dif-
fusion or desorption.60–62 PNPs have been evaluated to improve 
delivery to treat resistant tumors.63,64

Dendrimer nanocarriers
They were discovered in 1978 and are macromolecular compounds 
with a series of branches around an internal core.65 These systems 
are interesting for drug delivery because of their nanometric size 
range, ease of preparation and functionalization, and ability to dis-
play multiple copies of surface groups for biological reorganization 
processes.55,66 In the structure of the dendrimer, in contrast to the 
linear polymer, the following elements can be distinguished: a core, 
dendrons, and surface active groups. The core is a single atom or 
molecule (only if it has at least two identical functional groups) to 
which the dendrons are attached. The dendrons (dendrimer arms) 
are monomer molecules attached to the core that form layers in 
successive generations. The biocompatibility and physicochemical 
properties of dendrimers are determined by the presence of surface 
functional groups.67 Due to their globular shape and the presence 
of internal cavities, they have interesting properties, such as encap-
sulating drugs inside macromolecules or attaching them to surface 
groups.68 The encapsulation of drugs inside macromolecules is used 
when they are toxic, unstable, or poorly soluble. On the surface 
of dendrimers, the amount of drugs can be controlled through the 
number of covalent bonds.58 The surface of dendrimers provides a 
surface for the binding of specific ligands, which may include folic 
acid,69 antibodies,70 peptides,71 selective adenosine A3 receptors,72 
antimicrobial agents of silver salt complexes,73 and poly(ethylene 
glycol).74 Among the anticancer drugs conjugated in dendrimers are 
doxorubicin, camptothecin, cisplatin, and paclitaxel.75

Silica materials
Silica materials are used in drug delivery as xerogels through the 
sol-gel method.76 This manufacturing process involves tempera-
ture, agitation, the proportion of reagents, and drying of this mate-
rial during the reaction,77 allowing the formation of an amorphous 
and porous material with high surface area and biocompatibility 
that can carry drugs such as doxorubicin and cisplatin.78,79

Carbon nanomaterials
Carbon nanocarriers used in drug delivery systems are differenti-
ated into nanotubes and nanohorns.3,80,81 Carbon nanotubes are 
formed by rolling single (single-walled carbon nanotubes) or multi 
(multi-walled carbon nanotubes) layers of graphite with an enor-
mous surface area and excellent electronic and thermal conductiv-
ity,81 and their biocompatibility can be implemented with dendrimer 
anchoring.81,82 Single-walled carbon nanotubes have been used to 

improve the properties of other carriers, such as polymeric or non-
polymeric composites.81–83 There are three ways of immobilizing 
drugs in carbon nanocarriers: encapsulation of a drug in a carbon 
nanotube,84,85 chemical adsorption on the surface or in the spaces 
between the nanotubes (by electrostatic, hydrophobic interactions, 
and hydrogen bonds),86,87 and fixation of active agents in function-
alized carbon nanotubes. The application of carbon nanomaterials 
in cancer treatment has expanded to a variety of architectures com-
bined with photodynamic therapy,88 gene therapy, immunotherapy, 
and chemotherapy, and has been demonstrated in gastric cancer,89 
liver cancer,90 pancreatic cancer,91 ovarian cancer,92 among others.93

Magnetic nanoparticles
Magnetic nanoparticles are highly promising materials that can be 
used in several areas of nanotechnology. They are relatively easy 
to manufacture, low-cost, biocompatible, and can be directed by 
an external magnetic field. They can be visualized by magnetic 
resonance imaging (MRI).3,94 Magnetic nanoparticles can be man-
ufactured using family 1B metals with empty orbitals (3d), such as 
iron, manganese, zinc, cobalt, and nickel. Iron magnetic nanoparti-
cles have been approved for clinical use by the U.S. Food and Drug 
Administration as an MRI agent and to treat iron deficiency.95 In 
the synthesis of magnetic nanoparticles using iron, cobalt, nickel, 
and zinc, a core can be formed, and various types of coatings can 
be applied, such as polymers,96 dendrimers,97 or silanes.98

Nanocarriers and their challenges
In the current pharmaceutical industry, one issue concerns drug 
delivery systems and the pharmaceutical technologies used, which 
are less developed than the production of drugs, whether they are 
of natural or synthetic origin. The industry is seeking new delivery 
systems, which has shifted the pharmaceutical market in this direc-
tion. The therapeutic arsenal of drugs is extensive, and often the 
application of these delivery systems is minimal, requiring invest-
ment and a change in perspective on drugs that are usually already 
established but whose effectiveness in some diseases is entirely 
compromised. From a technological point of view, nanocarriers 
have interesting characteristics, including their surface-to-mass ra-
tio—much higher than that of other particles, their quantum prop-
erties, and their ability to absorb and transport drugs to different 
biological systems. Although nanoparticles are defined as 1–100 
nm in size, this size limits the adsorption of drugs, and often, in a 
disease, a larger quantity of the transported drug is needed. Conse-
quently, the size range (1–100 nm) is, in this case, relative.

Furthermore, differences in size can influence distribution and 
bioavailability.99–103 In liposomes with sizes above 100 nm, the 
clearance rate by the phagocytic system increases with liposome 
size,104 whereas liposomes smaller than 100 nm show a more ef-
fective charge.105 However, this varies with nanoparticle composi-
tion. The size, composition, surface charge, and shape of the nano-
particles are equally crucial for their performance.106 Factors such 
as heating and light can cause or even increase their therapeutic 
effects, such as cell death or drug release at the drug site. Doxoru-
bicin is an example, as it exhibits increased cytotoxicity when the 
in vitro temperature is 42°C.107

The composition of these nanocarriers can be of natural or syn-
thetic origin; in this case, it is essential to consider their biocom-
patibility. It is important not only to transport nanoparticles to the 
tissue or organ site and release the drug from the nanoparticle but 
also to ensure biocompatibility with the biological system and re-
duce toxicity.3,108–110
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Formulation challenges
The ideal condition in drug administration is to deliver the drug 
to the tumor site in the body while minimizing its harmful effects 
on unaffected tissues, which is a challenge considering the de-
velopment of metastasis, a feature of resistant tumors. Nanopar-
ticles improve local action related to the affected organ or tissue, 
increasing the amount of drug at the site and allowing penetration 
into cell membranes and lysosomal escape after endocytosis.111 
There are several reviews on nanometric formulations of chemo-
therapeutics.112–114 In addition to size, the chemistry of the par-
ticle surface is crucial for the absorption, distribution, stability, 
and effects of the particles. However, one problem is that nano-
particles can become trapped in the liver and spleen,115,116 which 
can be positive for the treatment of liver tumors. On the other 
hand, it reduces the circulation of these nanoparticles to target 
other organs. In the case of nanoparticles for oral administration, 
this can be critical, as some nanoparticles will be metabolized 
in the liver (first-pass effect), and much of the carrier and drug 
will be lost. The ideal use would perhaps be local or intravenous 
administration to minimize drug loss along with the carrier.117 

At present, several liposomes and PNPs are approved for use in 
anticancer treatment (Table 1).118–139

Challenge of the brain and its blood-brain barrier (BBB)
The brain poses specific challenges regarding drug delivery. The 
BBB is well known as the body’s best shield against exogenous 
substances.140 Pharmaceuticals, including most small molecules, 
generally do not cross the BBB. The endothelial barrier is particu-
larly narrow at the interface with brain astrocytes and, under normal 
conditions, can be crossed only using endogenous BBB transport-
ers, resulting in transporter-mediated active efflux transport and/or 
receptor-mediated transport. However, the barrier properties can be 
compromised, either intentionally or unintentionally, by drug treat-
ment, allowing the passage of nanoparticles.141–144 Several studies 
analyze the toxic effects of nanoparticles on brain endothelial cells 
(nanoparticles > 200 nm),145 but contradictory results have been 
reported in other studies with similar nanoparticles.142 When na-
noparticles with different surface characteristics were evaluated, 
it was found that neutral nanoparticles and low concentrations of 
anionic nanoparticles had no effect on BBB integrity, whereas high 

Table 1.  Approved cancer drugs using nanotechnology

Nanocar-
rier type Drugs Drug product 

name
Agency and year 
of approval Treatment indication Reference

Liposomes Mitoxantrone Novantrone EMA (2016) Lymphoma and Breast cancer 118

Liposomes Irinotecan lipo-
some injection

Onivyde FDA (2015) Metastatic pancreatic cancer 119,120

Liposomes Eribulin mesylate Halaven FDA (2012), 
EMA (2011)

Liposarcoma and Breast neoplasms 121

Liposomes Liposome vincris-
tine sulfate

Marqibo FDA (2012) Anticancer alkaloid that binds to tubu-
lin and interferes with cell division

122

Liposomes Mifamurtide Mepact EMA (2009) Osteosarcoma 123

Liposomes Paclitaxel Gen-
exal/Cynviloq

Paclitaxel 
Genexal/
Cynviloq

Korea (2007) Breast cancer and Non-
small cell lung cancer

124

Liposomes Doxorubicin nonpe-
gylated liposomal

Myocet FDA (2000) Breast cancer 125,126

Liposomes Liposomal cytarabine Depocyt FDA (2007) Lymphomatous meningitis/ antineo-
plasic agent/ inhibit DNA polymerase

127,128

Liposomes Diphtheria toxin Ontak FDA (1999) T-cell lymphoma 129,130

Liposomes Liposomal daunorubicin DaunoXome FDA (1996) HIV-associated Kaposi’s Sarcoma 
(KS) as a chemotherapy drug

131

Liposomes Liposomal Doxorubicin Doxil/Caelyx/
Lipidox

FDA (1995) Treatment of diferent cancers rang-
ing from metastatic ovarian cancer

132,133

Liposomes Daunorubicin and 
cytarabine encapsu-
lated in liposomes

Vyxeos FDA (2017) Acute myeloid leukemia 134,135

Polymeric 
NPs

PEGylated-L asparaginase Oncaspar FDA (1994) Acute lymphoblastic leukemia and 
chronic myelogenous leukemia

136,137

Polymeric 
NPs

Albumin-NPs bound 
to paclitaxel

Abraxane FDA 
(2005/2012/2013)

Metastatic breast cancer, lung cancer and 
metastatic pancreatic adenocarcinoma

138

Polymeric 
NPs

Leuprolide acetate Eligard FDA (2002) Prostate cancer 139

EMA, European medicines agency, FDA, Food and Drug Administration, NPs, nanoparticles.
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concentrations of anionic and cationic nanoparticles were toxic 
to the BBB. The extent of brain uptake by anionic nanoparticles 
at lower concentrations was higher than that by neutral or cati-
onic formulations at the same concentration. Therefore, the surface 
charges of nanoparticles should be considered when determining 
their toxicity and brain distribution profiles.143 In particular, coat-
ing nanoparticles with surfactants (e.g., Tween) has resulted in 
drug transport across the BBB. The transport mechanism is sug-
gested to be endocytosis through the low-density lipoprotein re-
ceptor of endothelial cells after the adsorption of lipoproteins from 
blood plasma onto the nanoparticles.142 The role of apolipoprotein 
E has been observed in drug transport across the BBB, whereas 
apolipoprotein E variants that do not recognize lipoprotein recep-
tors fail to transport the drug across the BBB.146

It has been suggested that recognition and interaction with lipo-
protein receptors on brain capillary endothelial cells are responsi-
ble for drug uptake by the brain. BBB passage can also be achieved 
by masking certain drug characteristics, thereby preventing or 
limiting binding to cellular efflux systems such as P-glycoprotein, 
a cellular transporter associated with drug removal from cells. P-
glycoprotein is an adenosine triphosphate (ATP)-dependent efflux 
transporter that plays an important physiological role in limiting 
drug entry into the brain.147–149 Other routes to reach the brain, by-
passing the BBB, include migration along the olfactory or trigemi-
nal nerve endings after deposition in the olfactory mucosa in the 
nasal region.150 Solid nanoparticles, such as manganese oxide, 
have also been shown to be translocated to the brain via the olfac-
tory pathway,151 based on measurements of manganese in different 
parts of the brain. Due to the BBB, a number of brain treatments 
for cancer with nanoparticles involve intracranial injections, but 
the search for a non-invasive route to the brain has become a prior-
ity among investigators.152

Hyperthermia-based anti-cancer treatment
Hyperthermia-based treatment dates back to ancient civilizations 
such as the Egyptians, Greeks, and Romans, who recognized the 

healing properties of heat, using thermal baths and saunas not only 
for relaxation but also to alleviate pain and treat various ailments.

In the late 19th century, medical practitioners began to observe 
that cancer patients who experienced high fevers occasionally 
saw their tumors regress. This observation led to the hypothesis 
that heat could have a direct therapeutic effect on diseases. This 
marked one of the earliest scientific acknowledgments of the po-
tential of heat in treating cancer.153

By the 1970s, technological advancements allowed for the 
development of precise equipment, such as microwave and ultra-
sound devices, enabling controlled heat application. Consequently, 
in 1975, during the first International Hyperthermia Congress 
held in Washington, scientists unveiled groundbreaking findings 
highlighting the effectiveness of combining heat therapy with 
conventional treatment methods for combating tumors. This an-
nouncement marked a pivotal moment in cancer research, estab-
lishing hyperthermia as a promising complementary approach to 
traditional therapies.154

In the 21st century, hyperthermia gained recognition as an ad-
juvant therapy in cancer treatment, particularly when combined 
with radiotherapy, chemotherapy, and immunotherapy. Ongoing 
clinical studies and research continue to explore its potential in 
treating various types of tumors and other diseases. Heat causes 
direct damage to cancer cells by denaturing proteins and damag-
ing cell membranes, leading to cell death. Cancer cells are par-
ticularly vulnerable to this damage due to their less efficient repair 
systems. Additionally, hyperthermia enhances the effectiveness of 
other treatments by increasing blood flow to tumors, thereby im-
proving the delivery of chemotherapy drugs and sensitizing cancer 
cells to radiation. It also stimulates the immune system, activating 
cells such as lymphocytes and macrophages,155,156 which promote 
a more robust antitumor response (Fig. 3).

Modern hyperthermia techniques vary depending on the appli-
cation. Local hyperthermia targets superficial or accessible tumors 
using radio waves, microwaves, or ultrasound. Regional hyper-
thermia is used for larger areas, such as organs or body cavities, 
often involving the perfusion of heated fluids or radiofrequency 

Fig. 3. Overview of viral nanoparticle-based drug delivery and magnetic hyperthermia. This figure shows the various mechanisms of action of VNPs and 
how they can be combined with magnetic nanoparticles for tumor targeting and drug release. The figure also highlights the role of magnetic hyperthermia 
in enhancing therapeutic efficacy by localizing heat to the tumor site. HT, hyperthermia; NPs, nanoparticles; VNPs, viral nanoparticles.
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devices. Whole-body hyperthermia, which consists of heating the 
entire body, is typically reserved for cases of metastatic cancer and 
can be induced using thermal blankets, hot water baths, or special-
ized devices.157 Despite its promising potential, hyperthermia is 
not without challenges and risks. Precise temperature control is 
crucial, as excessively high temperatures can damage healthy tis-
sues and cause burns, swelling, or pain in the treated area. In cases 
of whole-body and regional hyperthermia, for example, there is a 
risk of overheating and systemic complications, leading to severe 
side effects like gastrointestinal symptoms and cardiac complica-
tions.157,158

As an advanced evolution of the technique, magnetic hyperther-
mia involves injecting magnetic nanoparticles into tumors, which 
generate localized heat when exposed to an alternating magnetic 
field (AMF). This approach is highly efficient, noninvasive, and 
minimizes damage to normal tissues. It is also cost-effective, offers 
excellent tissue penetration, and effectively destroys cancer cells.

Magnetic hyperthermia
Magnetic hyperthermia has emerged as a revolutionary approach 
in cancer treatment, offering a unique blend of precision, efficien-
cy, and minimal invasiveness. When exposed to an AMF, this in-
novative technique leverages magnetic nanoparticles to generate 
localized heat within tumors. By delivering these nanoparticles 
directly to the tumor site—either through passive targeting, which 
exploits the leaky vasculature of tumors through what is known as 
the enhanced permeability and retention effect,159 or active target-
ing using tumor-specific ligands—magnetic hyperthermia ensures 
that heat is concentrated precisely where needed. When the AMF 
is applied, two phenomena emerge: Néel relaxation, due to the 
internal reorientation of the magnetic moments within the mag-
netic nanoparticle, and Brownian relaxation, due to the rotation 
of the entire nanoparticle within a fluid caused by Brownian mo-
tion. These processes produce heat that raises the local temperature 
to therapeutic levels, typically between 42–46°C. This localized 
heating disrupts cancer cell membranes, denatures proteins, and 
impairs mitochondrial function, leading to cell death or halted pro-
liferation while sparing surrounding healthy tissues.160

The development of advanced magnetic nanoparticles has 
been a driving force behind the success of magnetic hyperther-
mia. Traditional iron oxide nanoparticles (Fe3O4 and/or γ-Fe2O3) 
have been widely used due to their biocompatibility and magnetic 
properties.161 These nanoparticles can be tailored to optimize their 
performance, ensuring they accumulate effectively in tumors and 
generate sufficient heat under the influence of the AMF.

One of the most compelling aspects of magnetic hyperthermia 
is its ability to combine this thermal therapy with other treatment 
modalities.162 Magnetic nanoparticles can be functionalized to car-
ry chemotherapy drugs or be encapsulated within thermo-respon-
sive materials that release therapeutic agents when heated. This 
dual approach enhances the direct cytotoxic effects of heat and 
allows for targeted drug delivery, reducing systemic side effects. 
Additionally, it can activate thermo-responsive promoters to trig-
ger the expression of therapeutic genes, further amplifying its an-
ticancer effects. The versatility of magnetic hyperthermia extends 
to its compatibility with existing treatments like chemotherapy and 
radiotherapy, as the heat generated can sensitize tumor cells, mak-
ing them more susceptible to these therapies.

Established therapies combined with magnetic hyperthermia
Magnetic hyperthermia exerts its antitumor effects through various 
interconnected mechanisms. These mechanisms include direct cell 

damage, structural changes in cells, DNA damage, repair inhibi-
tion, apoptosis induction, and modulation of heat shock proteins 
(HSPs). Together, these processes halt tumor growth and enhance 
the effectiveness of other cancer therapies.163,164

Direct cell damage is the primary mechanism of hyperthermia 
and depends on the temperature and duration of heat exposure. At 
moderate temperatures (40–45°C), prolonged exposure of 30–60 
min is required to cause irreversible cell damage.165 At higher tem-
peratures (above 60°C), proteins rapidly denature, leading to im-
mediate cell death through coagulative necrosis. This destabilizes 
the cytoskeleton and cell membrane structure, impairing motility 
and intracellular signaling. Mitochondria are particularly sensitive 
to heat, with high temperatures causing proton leakage, swelling, 
and structural changes that contribute to cell death. Additionally, 
heat inhibits DNA replication by denaturing essential enzymes, 
such as DNA polymerase alpha, further compromising cell sur-
vival.166–170 Hyperthermia also induces significant changes in cel-
lular structure, particularly in the cytoskeleton, which is essential 
for maintaining cell shape and function.

Another important mechanism is DNA damage and repair in-
hibition. Hyperthermia directly causes DNA breaks and the for-
mation of apurinic/apyrimidinic sites while promoting the gen-
eration of reactive oxygen species that further damage DNA.171 
Heat limits the activity of DNA polymerases, impairing replica-
tion and increasing DNA breaks. It also promotes the formation 
of γH2AX foci, markers of double-strand breaks, and modulates 
the activity of proteins such as ATM and ATR, which are involved 
in the DNA damage response. Additionally, hyperthermia disrupts 
multiple DNA repair mechanisms, including base excision repair, 
nucleotide excision repair, mismatch repair, and homologous re-
combination. By inhibiting these repair mechanisms, hyperthermia 
increases the susceptibility of cancer cells to other treatments, such 
as chemotherapy and radiotherapy.172–176

Finally, hyperthermia also triggers apoptosis, or programmed 
cell death, and modulates the expression and function of HSPs, 
which play a dual role in the tumor response. On the one hand, 
HSPs are overexpressed in response to heat stress, helping cells 
cope with protein denaturation and preventing irreversible dam-
age. On the other hand, extracellular HSPs released by necrotic 
tumor cells act as signaling molecules, activating the immune 
system. Proteins such as HSP70 and HMGB1 enhance antigen 
presentation and dendritic cell activation, promoting an immune 
response against the tumor. HSP70, in particular, forms complexes 
with tumor antigens recognized by immune cells, further amplify-
ing antitumor immunity.

Hyperthermia in clinical applications
The clinical applications of hyperthermia are extensive. It is widely 
studied in cancer treatment, particularly in combination with radio-
therapy, chemotherapy, and immunotherapy (Fig. 3). It has shown 
promise in treating breast, prostate, head and neck, and melanoma 
cancers, among others. Clinical studies have demonstrated that hy-
perthermia can increase tumor response rates and improve patient 
survival. A summary of clinical studies evaluating the efficacy and 
outcomes of hyperthermia combined with radiotherapy, chemora-
diotherapy, and immunology across various cancer types is pre-
sented in Table 2.177–190

Magnetic hyperthermia in clinical applications
In 2003, the first clinical feasibility study on magnetic nanoparti-
cle hyperthermia was conducted with 14 glioblastoma multiforme 
patients, including two with primary tumors and 12 with recur-
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rences.191 Magnetic fluid was injected into the tumors using neuro-
navigation guidance, ensuring a nearly atraumatic procedure with 
no complications. Slow injection prevented increased intracranial 
pressure. Patients underwent four to ten thermotherapy sessions 
(median: 6.5), each lasting 1 h and administered twice weekly, 
combined with external beam radiation. The median injected fluid 
volume was 3 mL (range: 1.0–5.5 mL), corresponding to 0.1–0.7 
mL per mL of tumor volume. Treatment was well tolerated at 
magnetic field strengths of 3.8 to 13.5 kA/m (median: 8.5 kA/m), 
with only minor side effects reported. Intratumoral temperatures 
reached 42.4–49.5°C, with 90% of tumor volumes achieving 39.3–
45.5°C (median: 40.5°C). Approximately 55% of tumor volumes 
exceeded 42°C, and the median CEM43 T90 was 7.7 min (range: 
3.2–502 min). These results demonstrate the feasibility and toler-
ability of magnetic nanoparticle hyperthermia in treating glioblas-
toma multiforme.

A prospective feasibility study, launched in February 2004, in-
cluded 22 patients with recurrent or residual tumors (non-resecta-
ble and pre-treated, such as prostate and cervix carcinoma, and soft 
tissue sarcoma). All patients received additional radiotherapy and/
or chemotherapy in conjunction with the experimental treatment. 
All patients tolerated the nanoparticle instillation well, although 
pre-irradiated tumor tissue in some cases posed mechanical resist-
ance to injection and fluid diffusion. Median infiltration volumes 
were 3 mL (range: 1.5–5 mL) for chemotherapy/transrectal ultra-
sound (CT/TRUS)-guided procedures and 8.5 mL (range: 6–12.5 
mL) for TRUS-guided prostate treatments, equating to approxi-
mately 0.3–0.4 mL of magnetic fluid per mL of tumor volume. In-
traoperative infiltration volumes averaged 7 mL per patient (range: 
2.3–10 mL). Magnetic field strengths were limited by patient dis-
comfort (e.g., at skin folds or bone surfaces) to 3–5 kA/m in the 
pelvic region and up to 8.5 kA/m in the upper thorax, resulting in 
a median CEM43 T90 of 10.5 min (range: 1–106 min). Treatments 
were generally well tolerated, with minor to moderate side effects 
such as sensations of heat, superficial skin burns, increased pulse 
rate, and elevated blood pressure. Two patients experienced grade 
1 to 2 perineal pain lasting up to 4 months. Overall, the study dem-
onstrated the feasibility and tolerability of magnetic nanoparticle 
hyperthermia in treating recurrent and residual tumors.191

The first clinical use of interstitial hyperthermia with magnetic 
nanoparticles in human cancer was performed by Johannsen et 
al.192 A pilot study investigated the potential of magnetic hyper-
thermia as a minimally invasive treatment for locally recurrent 
prostate cancer. Treatment planning involved CT imaging to de-
termine the optimal number and placement of magnetic fluid de-
pots in the prostate, ensuring adequate heat delivery while protect-
ing the rectum and urethra. Magnetic nanoparticles were injected 
transperineally under ultrasound and fluoroscopy guidance, and 
treatments were administered using a magnetic field applicator op-
erating at 100 kHz with a field strength ranging from 0 to 18 kA/m. 
Invasive temperature measurements were taken during the first 
and last of six weekly 60-min magnetic hyperthermia sessions. 
CT scans were repeated to track nanoparticle distribution and the 
positioning of temperature probes. The nanoparticles remained in 
the prostate throughout the six-week treatment period, allowing 
for non-invasive temperature estimation using AMIRA software, 
which correlated well with direct invasive measurements. A cool-
ing device was used to ensure patient comfort without the need for 
anesthesia. In the first patient treated, intra-prostatic temperatures 
ranged from 40.0°C to 48.5°C at a field strength of 4.0–5.0 kA/m, 
demonstrating effective and controlled heating. These encouraging 
findings prompted the initiation of a phase I study to evaluate the 

feasibility, toxicity, and impact on quality of life in patients with 
biopsy-confirmed local recurrence following radiotherapy.192

Viruses as nanocarriers
Viruses are infectious agents ranging in size from 17 to 1,500 
nanometers.193 Since they are obligatory intracellular parasites 
incapable of generating energy, they do not feed or grow. Their 
fundamental structure includes a viral genome, which can be ei-
ther DNA or RNA, but not both simultaneously, and a protein cap-
sid, which protects this genetic material. In addition to the capsid, 
some viruses may possess a lipid envelope derived from the host 
cell membrane. Virus-encoded proteins at the surface of the cap-
sid or envelope are used for the recognition and infection of host 
cells through several pathways, including the endocytic pathway 
or direct injection of the genetic material into the host cell.194 The 
life cycle of a virus comprises several stages: attachment to the 
cell surface, cell entry, uncoating (release of genetic material into 
the cell), expression of the early genes, replication of the viral ge-
nome, expression of late genes (virus structural proteins), viral as-
sembly (formation of new virion particles), and release from the 
host cell, leading to or not leading to host cell lysis.194

Compared to cellular organisms, viruses are structurally simple, 
allowing them to be highly efficient at replicating and generating 
viral burst values, which refers to the number of viruses released 
by an infected cell during its life cycle.195 These values can range 
from 50 to 100 viruses per infected cell in bacteriophages to 50,000 
particles per cell in HIV.196–198 Much of this efficiency is related to 
how viruses assemble their structures and escape from the cell. In 
terms of morphology, viruses can present icosahedral symmetry or 
helical symmetry. Non-enveloped icosahedral viruses have higher 
viral bursts.199 This efficiency is also related to self-assembly, the 
process that allowed the development of natural nanocarriers of 
viral origin.

Self-assembly of viral capsids
The viral particles assemble spontaneously from their protein 
subunits and nucleic acid genomes in a process known as self-
assembly, defined as “The autonomous organization of individual 
components into patterns or structures without human interven-
tion”.200 The viral genome encodes the information that deter-
mines their three-dimensional structures in a way that the protein 
subunits bind to each other. The length of the viral genome, and 
consequently the number of unique proteins it can encode, is lim-
ited by the necessity of being enclosed within its capsid; thus, the 
capsid must be composed of a large number of identical protein 
subunits to avoid exhausting the coding capacity of the genome.201 
While for some viruses, the capsid grows around the genome, oth-
ers build an empty capsid, and the genome is later packed using 
packaging motors dependent on ATP hydrolysis.202

The interactions between neighboring subunits are specific. 
With all subunits on the capsid surface identical, their interactions 
will be nearly identical, resulting in a compact, closed, and sym-
metrical structure.203 Viral capsids are supramolecular structures, 
whose assembly results from various noncovalent interactions, 
including van der Waals forces, electrostatic and hydrophobic in-
teractions, hydrogen bonding, among others.204 As a consequence 
of the self-assembly strategy, non-infective virus particles (lacking 
viral genome) may be naturally produced, generating empty shells. 
This phenomenon was observed in 1968 by Bayer and collabora-
tors.205 Since then, it has been observed that these characteristics 
of viral capsids could make them suitable for the delivery of drugs 
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and other therapeutic alternatives, leading to the development of 
what is now known as VNPs and VLPs.

VNPs and VLPs
As mentioned in previous sections, synthetic nanocarriers offer 
several benefits but also some drawbacks, such as toxicity, phar-
macokinetics, and lack of tissue specificity. VNPs are defined as 
nanomaterials derived from plants, bacteriophages, and mammali-
an viruses. VNPs are the version that contains the viral genome,206 
while VLPs constitute a subgroup of VNPs, whose structures are 
composed of natural viruses lacking their genomes, making them 
incapable of replication and non-infectious, thus safe for use in 
vaccines, diagnostics, and research.207 Since the obligatory para-
site features of the virus are essential to its propagation strategy, 
their components present intrinsic biocompatibility and biodegra-
dability, an advantage over synthetic nanocarriers.208 Furthermore, 
co-evolution with their hosts generates tissue specificity, defining 
the viral tropism toward tissues and organs.

VNPs are made by expressing viral proteins in host systems like 
bacteria, yeast, insects, or mammalian cells, where the proteins 
self-assemble into nanoparticles. These particles are then purified 
and often engineered for specific tasks, such as displaying target-
ing ligands, encapsulating drugs, or carrying genetic material.209 
In VNPs, the viral genome remains inside the capsid, and the re-
sulting product can be either replication-competent or replication-
defective vectors. Examples include adenovirus nanoparticles for 
gene therapy, where specific regions essential for gene expression 
of its double-stranded DNA genome are replaced by a therapeutic 
gene that, when expressed, can lead to defect corrections (gene 
therapy).210 In adenovirus vaccine applications, the genes inserted 

are from antigens that stimulate the immune system.211 In can-
cer gene therapy, genes related to the activation of the cell death 
pathway are activated to induce tumor cell death.212 Plant virus 
nanoparticles for cancer therapy have been extensively studied, 
also due to their safety, since, with or without their genomes, plant 
viruses do not replicate in mammalian cells.213

While for some viruses the capsid can self-assemble with or 
without the presence of its genome, other VNPs are derived from 
viruses that can only assemble in the presence of their genomes. 
Thus, those with this limitation need to carry their loads exclu-
sively at the surface of the VNP, such as the potato virus X.214 
VNPs are highly versatile due to their uniform size, self-assembly 
properties, and ability to be modified for targeted applications.

Chimeric VNPs combine components from different viruses or 
are engineered to display foreign peptides or proteins.215 Function-
alized VNPs involve modification with chemical groups,216 target-
ing ligands,217 or imaging agents for specific applications, such 
as the use of cowpea mosaic virus particles functionalized with 
fluorescent dyes for imaging (Fig. 4).218

The generation of VLPs involves the use of yeast-based (among 
others) expression systems, since yeast can efficiently express and 
assemble viral proteins. The process begins by cloning the gene(s) 
encoding the viral structural protein(s) into a yeast expression vec-
tor, which is then introduced into yeast cells like Saccharomyces 
cerevisiae or Pichia pastoris.219 The yeast cells are cultured under 
conditions that induce the expression of the viral proteins, which 
then self-assemble into VLPs. These VLPs can be harvested from 
yeast cells or the culture medium and purified using techniques 
like centrifugation or chromatography. Yeast is particularly ad-
vantageous for VLP production due to its cost-effective, scalable 

Fig. 4. Comparison between virus-like particles (VLPs) and viral nanoparticles (VNPs). VLPs is a subgroup of VNPs that lacks genetic material and therefore 
is non-infectious. Generally, is composed by only structural proteins and used as empty shells. On the other hand, the viral genome of the VNPs may be 
present, inactivated or modified and thus, retains partially its infectivity.
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nature and its capacity for performing post-translational modifica-
tions necessary for proper protein folding and assembly.220 Exam-
ples of VLP vaccines produced in yeast include the hepatitis B vac-
cine and the human papillomavirus (HPV) vaccine.221,222 Despite 
some challenges, such as differences in glycosylation patterns 
compared to mammalian cells and the production of VLPs derived 
from enveloped viruses,223 yeast remains a powerful and widely 
used platform for VLP production (Fig. 5). The development of 
VNPs and VLPs to treat cancer is related, among other things, to 
enhancing drug targeting against tumor cells. Thus, the efficiency 
of each model (VNPs or VLPs) depends on the targeted tumor.

The use of VLPs in cancer research
Regarding the use of VLPs in cancer therapeutics, several ap-
proaches have been developed to both prevent and treat tumors. In 
the first case, VLPs are used in cancer vaccines to stimulate strong 
immune responses and long-term immunological memory. When in-
jected, VLPs are taken up by immune cells, such as dendritic cells, 
activating both adaptive and innate immune responses (Fig. 6).224 
In this respect, preventive vaccines based on VLPs have been de-
veloped for hepatitis B virus (HBV) and HPV.225 When VLPs are 
generated with structural proteins from HPV, eliciting strong im-
mune responses against HPV infection, preventing the development 
of cervical cancer. These vaccines were approved by international 
regulatory agencies for human use, with names such as Engerix-B, 
Recombivax HB, Euvax, among others (for HBV),226 and Cervarix, 
Gardasil, and Gardasil 9 (for HPV).227 In breast cancer, HER2 is 
overexpressed in 20–30% of invasive breast tumors. This epitope 

is used to generate an immune response against HER2, inducing 
prophylactic vaccination so as to reduce the proliferation of tumors 
when already established.228 Other cancer vaccines using VLPs are 
those developed to treat pancreatic cancer,229 melanoma,230 and 
brain tumors.231 Another approach involves the generation of VLPs 
to display tumor-specific antigens, which train the immune system 
to recognize and attack established tumors, reducing their mass and 
contributing to overcoming resistance to conventional therapies. 
Challenges include identifying effective antigens, overcoming im-
mune suppression in tumors, and the development of neo-antigens 
– antigens derived from tumor mutations.232

In addition, a widely studied approach is the use of VLPs loaded 
with chemotherapeutic drugs using the VLP’s surface specificity, 
which can be engineered to target tumoral tissue instead of normal 
tissue, also reducing systemic toxicity. Several works have demon-
strated the efficiency of VLPs loaded with doxorubicin, showing 
enhanced efficiency against glioblastoma multiforme, among oth-
ers.233,234 Monomethyl auristatin (MMAE) belongs to the group of 
the Auristatins, synthetic analogs of dolastatin 10 (D10), a highly 
cytotoxic antineoplastic agent derived from Dolabella auricularia. 
MMAE is usually conjugated with antibodies to treat lymphoma 
due to its high systemic toxicity,235 being administered as a pro-
drug, Val-Cit linked MMAE. Shukla and co-workers evaluated the 
potato virus X VLPs conjugated with Val-Cit linked MMAE in 
vivo and in vitro, observing enhanced cytotoxicity in vitro and im-
proved percent survival rates in vivo.236

Cisplatin, a platinum derivative used in chemotherapy for the 
last 30 years, was tested as cargo for VLPs by Hu and Steinmetz. In 

Fig. 5. Steps of virus-like particles (VLPs) production. 1. Production and expression: the viral structural genes are cloned, and after the viral proteins are 
expressed in different expression systems, including yeast, bacteria, plant cells, mammalian cells, and insect cells. 2. Purification of VLPs: to obtain VLPs with 
high purity and integrity, techniques like chromatography and ultracentrifugation are employed to purify the VLPs. 3. Formulation: in this last step, adjuvants 
and excipients are added to VLPs, enabling the production of VLPs vaccine, which will be administered to patients.
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their work, VLPs of the physalis mottle virus were conjugated with 
maleimide-functionalized cisplatin, a prodrug that, upon cellular 
pH changes, generates cisplatin. They linked the prodrug to both 
the internal and external surfaces of physalis mottle virus-derived 
VLPs, and with this approach, they were able to carry cisplatin into 
cancer cells.237

Merging strategies
Most of the strategies discussed have their own advantages and 
drawbacks. To leverage the strengths of each, they have been com-
bined to maximize their benefits, enhancing delivery efficiency 
and improving the overall treatment outcomes.

Synergistic combination of VLPs and hyperthermia
VLPs, hyperthermia, and magnetic hyperthermia represent cut-
ting-edge technologies in the fields of nanomedicine and cancer 
therapy. Their combination offers a promising approach for tar-
geted drug delivery, imaging, and thermal ablation of tumors.

Magnetic nanoparticles, typically composed of iron oxides like 
magnetite (Fe3O4) or maghemite (γ-Fe2O3), are injected into the 
tumor site and activated by an external AMF.160 The controlled 
heating induces apoptosis or necrosis in cancer cells while sparing 
surrounding healthy tissue.

Several groups have explored combinations of both techniques 
by adding one approach to another. Hoopes and co-workers evalu-

ated the effect of intra-tumoral magnetic nanoparticle hyperther-
mia in an in vivo model for MTG-B mammary adenocarcinoma. 
They treated the tumor with iron oxide nanoparticles, applying an 
AMF, and added a modified version of the cowpea mosaic virus 
VLPs to induce a stronger immune response. In fact, this com-
bined treatment enhanced the expression of pro-inflammatory cy-
tokines like tumor necrosis factor-alpha, interleukin-6, enhanced 
the immunogenicity against the tumor, and reduced the tumor mass 
through cell death.238

The generation of VLPs with a magnetic core can be used in a 
series of applications, such as targeted drug delivery,239 magnetic 
bioseparation,240 and MRI contrast agents,241 among others.242 The 
use of superparamagnetic nanoparticles is preferred due to their 
reversible magnetization, which avoids NP aggregation.

It was already well established that synthetic nanocarriers can 
be thermally responsive, leading to chemotherapy drug delivery 
controlled by temperature,243 but in 2019, Thong and co-workers 
developed a multifunctional nanovehicle based on the VLP of 
Macrobrachium rosenbergii nodavirus. In this work, they cova-
lently conjugated folic acid to lysine residues located on the sur-
face of Macrobrachium rosenbergii nodavirus, while doxorubicin 
was loaded inside the VLP. The objective was to deliver the cargo 
(doxorubicin) to tumor cells (HT29 colorectal cancer) rich in fo-
lic acid receptor (FR) using hyperthermia. They also tested two 
other cell lines with lower FR expression, and they concluded 
that, in fact, in the cells with higher FR receptors, the VLP uptake 
was higher.244

Fig. 6. VLPs-inducing immunity. Upon administration, VLPs are uptake by APC, like dendritic cells. VLPs can be presented by MHC-I or MHC-II, which are 
recognized by CD8+ and CD4+ T cells, respectively. For cellular response, CD8+ cells differentiate in cytotoxic T cells, releasing IFN-γ to exert their cytotoxicity 
activity in cancer cells. In humoral response, CD4+ cells differentiate into T helper cells (TH1/TH2), TH1 maintains the activity of cytotoxic T cells, and TH2 
releases IL-4 and IL-10, inducing B cell activation. Once activated, B cells release IgG antibodies, enabling their antineoplasic effects. APC, antigen-presenting 
cells; IFN- γ, interferon-gamma; IgG, immunoglobulin G; IL-4/-10, interleukin-4/-10; MHC-I/II, major histocompatibility complex class I/II; TH, T helper cells; 
TNF-α, tumor necrosis factor-α; VLP, virus-like particles.
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Intranasal delivery using different combinations for brain 
tumors
Primary brain tumors are classified as primary central nervous sys-
tem (CNS) lymphoma, malignant ependymomas, meningiomas, 
lower-grade gliomas (I-III), and glioblastomas (Grade IV glioma). 
In addition, secondary brain tumors derived from metastasis from 
lung and breast tumors can also pose a threat to the patient’s life. 
Glioblastoma is the most aggressive brain tumor, characterized 
by necrosis, microvascular proliferation, and rapid, infiltrative 
growth. Glioblastoma can arise as a primary tumor or develop 
secondarily from lower-grade gliomas. Treatment for patients with 
good performance status includes surgery, radiation, and chemo-
therapy, and even with the development of targeted therapy, the 
prognosis remains poor, with a median survival of 14–16 months 
and a five-year overall survival rate of 9.8%.245

Developing drugs whose action occurs in the brain is challeng-
ing, largely because of the BBB: endothelial cells in capillaries 
and other microvasculature of cerebral tissue, which function to 
protect the CNS against xenobiotics and maintain homeostasis, but 
impair the satisfactory delivery of pharmacological agents to the 
CNS.246 A promising solution is intranasal drug delivery, which 
bypasses this barrier noninvasively by transporting drugs directly 
to the brain via the olfactory and trigeminal nerves.

The olfactory neurons extend axons through the cribriform 
plate. These axons are wrapped in the olfactory ensheathing cells 
and neural fibroblasts that form a protective sheath connected to 
the brain’s protective layers (meninges), allowing drugs to move 
directly into the brain. These neurons are unmyelinated and bipo-
lar, meaning they have two extensions. They can carry drugs to 
the CNS through the intracellular pathway, where drugs are taken 
up by olfactory sensory cells, transported along their axons to the 
olfactory bulb in the brain, and then spread to other brain regions 
through a process called transynaptic transport; and the extracel-
lular pathway, where the drugs move through the spaces between 
cells in the nasal epithelium, then travel along the outside of nerve 
fibers to reach the brain’s cerebrospinal fluid.247

Intranasal delivery is a promising method for treating brain-re-
lated conditions because it bypasses the BBB, a major obstacle for 
many drugs. It is non-invasive and allows drugs to reach the brain 
directly. Furthermore, other benefits include bypassing liver drug 
metabolism, reducing systemic toxicity.248

Problems with intranasal administration
Despite these advantages, intranasal administration of drugs also 
faces drawbacks, such as the reduction of drug penetration within 
the nasal epithelial membrane in the nasal chamber due to efflux 
transporters (P-glycoprotein),249 metabolic enzymes, and muco-
ciliary clearance.250 Other side effects include sneezing, bleed-
ing, among others.251 Thus, alternatives for delivering drugs to 
the brain via the intranasal route using nanotechnology have been 
investigated.

Viral oncolysis through intranasal delivery
While in VLPs, natural viruses lacking genomes (replication-
incompetent) are used, in viral oncolysis (VO), natural or engi-
neered viruses that maintain their replication capacity are used. 
They have an intrinsic or induced capacity to replicate only in 
tumor tissue, leaving normal cells intact. This feature is relat-
ed to the defective antiviral response of tumor cells (e.g., type 
I interferon response), dysfunctional tumor suppressor proteins 
(e.g., p53 or pRb), and overexpression of tumor survival factors 
in cancer cells. Normal cells are spared because their antiviral 

defense systems and tumor suppressor pathways remain intact.252 
There are a few naturally occurring oncolytic viruses; in addi-
tion, pathogenic viruses can be genetically modified to enhance 
tumor selectivity by removing virulence factors critical for in-
fecting normal cells. Viral infection relies on cell surface recep-
tors and intracellular interactions, with tumor-specific tropism. 
Once infected, these cells undergo strong proliferation, inducing 
tumor cell lysis. In normal cells, interferon activation inhibits 
viral replication, providing an additional layer of selectivity.253 
Therefore, this therapeutic modality depends on the ability of the 
virus to maintain its intact replication capacity.

Several studies have shown the capacity of viral strains to infect 
and kill brain tumors in vivo, in vitro, and in clinical studies.254 On-
colytic viruses already studied for brain tumors include oncolytic 
H-1 parvovirus, herpes simplex virus-1, Reovirus, among others, 
with non-standardized delivery methods, including intratumoral 
injection, intravenous,255 and also intranasal routes, using vesicu-
lar stomatitis virus.256 However, this approach has a limited effect 
as monotherapy.257

To improve the efficiency of viral delivery for viral oncolysis, 
this method was combined with intranasal cellular delivery of on-
colytic viruses. This promising approach involves the use of mes-
enchymal stem cells (MSCs) as anticancer therapeutics, as they 
are able to deliver proteins, genes, or oncolytic vectors.258 This 
strategy is based on the observation that MSCs can cross the cribri-
form plate and migrate through the olfactory bulb to other parts of 
the brain, representing a non-invasive method for cell delivery to 
the CNS (Fig. 7).259 Thus, this strategy uses MSCs loaded with on-
colytic viruses to directly reach the brain,260,261 avoiding the side 
effects related to direct intranasal drug delivery.

Using neurotropic viruses to generate VLPs
The VLPs under investigation to treat brain tumors mostly use the 
intravenous route or intratumoral injection, but data on the intra-
nasal route through olfactory neurons have not been explored, as 
evidenced by the lack of literature data. Even though VLPs de-
rived from non-neurotropic viruses can be modified to target neu-
ral cells,262 one way to improve the specificity of these VLPs is to 
use viruses that have natural neurotropism.

In 2018, Chao and collaborators developed VLPs derived from 
the neurotropic JC polyomavirus, which infects glial cells and 
oligodendrocytes and causes fatal progressive multifocal leukoen-
cephalopathy in patients with AIDS. They investigated the feasi-
bility of a gene therapy strategy for glioblastoma using JC poly-
omavirus VLPs as a gene delivery vector.263

In contrast to non-replicating VLPs, oncolytic viruses are rep-
licating viruses designed to destroy tumor cells. Examples include 
adenoviruses, herpes simplex virus, and rotaviruses, some of which 
are approved or under clinical trials for cancer therapy.264 Notably, 
the Zika virus (ZIKV) has emerged as a promising oncolytic virus 
for treating glioblastoma due to its neurotropic nature and abil-
ity to infect glioma stem cells, which are resistant to conventional 
therapies like chemotherapy and radiation. ZIKV’s specificity for 
glioma stem cells is linked to the expression of the AXL recep-
tor, SOX2, and αVβ5 integrin, which are highly expressed in these 
cells.265 Additionally, the Musashi-1 protein, which is overex-
pressed in tumors but not in most healthy tissues, enhances ZIKV 
replication in cancer cells while limiting side effects in patients 
due to restricted viral replication in normal tissues.

VLPs combined with other nanocarriers
Even though VNPs and VLPs represent an innovation in cancer 
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research and treatment, there are some issues that limit their ef-
ficiency. Among the limitations of VLPs regarding drug delivery 
are: payload capacity, pre-existing immunity, difficulty in crossing 
biological barriers, penetrating solid tumors, and physical instabil-
ity. As can be seen below, and in Table 3, some combinations of 
VLPs with other nanocarriers have the potential to solve some of 
these problems.206,266–273

Payload capacity
VLPs may present low payload capacity. They have limited inter-
nal space, restricting the amount of drugs they can carry. Among 
the recent solutions to improve the delivery of VLPs’ payload, 
Mg-based micromotors have been designed. This strategy utilizes 
the autonomous motion of biocompatible micromotors to actively 
deliver Qβ VLPs’ payloads within the tumor area, enhancing the 
local distribution and retention time.266 These micromotors utilize 
a core made of biocompatible and biodegradable Mg microparticle 
‘engine’ covered with gold. The gold layer allows the micromotor 
chemical reaction with the water fuel, generating hydrogen bub-
bles in biological media. This method was evaluated to treat ovar-
ian cancer in vivo.266

Pre-existing immunity
For the VLP to successfully reach the target tissues, it needs to 
avoid immune neutralization. The immunological response to-
wards VLPs in cancer can reduce their efficiency, since those 
used for the prevention of cancer development (vaccines against 
oncoviruses) mostly use VLPs built of human viruses (such as 
HBV or HPV VLPs).274 For the treatment of established tumors 
such as breast cancer and melanoma, human viruses are also 

used. In both cases, this can lead to the development of antibod-
ies against VLP components, leading to neutralization and re-
ducing the therapeutic response.275 A solution in this case is the 
use of plant-based VLPs for targeting human tumor tissues; they 
can be targeted to the tumor tissue, but since they are derived 
from a plant virus, there’s no off-target binding or immunological 
clearance. In addition, compared to the generation of synthetic or 
animal-derived nanoparticles, the synthesis of these plant-based 
VLPs is scalable, cost-effective, and environmentally sustaina-
ble. Even though a weak immunological response was observed, 
no signs of allergy were detected.267

Low permeability in the BBB
Improving the permeability of the BBB is critical for the treat-
ment of brain tumors, and several cutting-edge strategies have 
been designed to achieve this goal. Parsamian et al.268 engi-
neered gold nanoparticles conjugated to Qβ VLPs, generating 
a polyvalent VLP-gold nanosystem, where the VLPs are deco-
rated with gold nanoparticles to generate photothermal-induced 
nanobubbles. The transient nanobubble cavitation and collapse 
can temporarily induce openings in the blood–brain barrier.268 
Without conjugation with VLPs, gold nanostructures can induce 
tissue damage. This combination enhanced the efficiency of pho-
tothermal therapy.

VLPs’ physical instability
Among the strategies where VLPs are used, there is antigen pres-
entation. The size of the inserts in viral surface proteins is associ-
ated with increased instability.276 Different viruses need different 
optimization protocols to reduce VLP instability.277 More recent 

Fig. 7. Representation of viral oncolysis via intranasal pathway (IN). Intranasal inoculation of the oncolytic virus leads to olfactory nerve transport into the 
brain, infecting and killing tumors, while leaving normal cells intact, reinforcing the viral selectivity against tumor.
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approaches to reduce VLP instability use metallic nanoparticles 
coated with VLPs,269 also enhancing drug delivery.270

Magnetic nanoparticles coated with VLPs
Magnetic nanoparticles have been developed for MRI contrast 
agents and cancer treatment, but among the issues detected was 
dispersibility in human fluids such as serum and blood.271 They 
also have the potential to enhance payload delivery.278 Coating 
magnetic nanoparticles with VLPs improved the dispersibility, and 
the conjugation with tumor-specific ligands (such as epidermal 
growth factor) efficiently targets tumor cells.272

Topology mimicking strategy
The topology of organic VLPs led researchers to develop methods 
to synthesize inorganic VLPs (viral-mimicking topography), to en-
hance internalization and efficiency of silica nanoparticles.279 Kim 
et al.273 developed a method where organic VLPs are used as a 
template to build silica nanoparticles. In their work, they produced 
VLPs made of HPV16 structural protein, encapsulated doxoru-
bicin, and then performed controlled silicification of HPV16 VLPs, 
creating a silica nanocage.273 Their results showed higher biocom-
patibility and cellular uptake than conventional mesoporous silica 
nanoparticles. However, the long-term toxicity of inorganic nano-
particles caused by accumulation in the reticuloendothelial system 
remains a challenge for clinical application.280

Limitations of this review
While this review provides an overview of the advancements in 
combining conventional anticancer therapies (drugs and antibod-
ies) with nanoparticles, magnetic hyperthermia, and VLPs, it has 
certain limitations. We focused on innovative approaches and chal-
lenges but did not extensively cover all possible combinations of 
these therapies, potentially omitting some emerging or niche ap-
proaches. Given the fast evolution of this field, some recent studies 
or alternative viewpoints might not be included.

Future directions
Technological progress has allowed the integration of multiple 
strategies that individually enhance anti-tumor treatment efficacy. 
Synthetic nanoparticles, VNPs, and VLPs, when combined with 
chemotherapy and hyperthermia, improve targeting accuracy and 
minimize drug exposure to healthy tissues, particularly in resistant 
cancers. Intranasal drug delivery, which bypasses the BBB, also 
offers a promising approach for treating brain tumors. Despite 
these advancements, cancer remains a critical global health chal-
lenge, and widespread access to these innovative therapies contin-
ues to be a major barrier.

Magnetic hyperthermia is a promising technique for treating 
cancer, but it still faces several important limitations that hinder its 
widespread clinical use. One of the main challenges is the efficacy 
of delivering magnetic nanoparticles specifically to the tumor site. 
It is difficult to ensure that enough particles reach the tumor with-
out affecting healthy tissue and to ensure uniform distribution. This 
uneven distribution can cause inconsistent heating, which reduces 
the effectiveness of the treatment and increases the risk of damage 
to nearby healthy tissue. Controlling and monitoring the tempera-
ture during treatment is also a major issue. Since heating depends 
on the concentration and distribution of nanoparticles, it is difficult 
to predict or regulate the temperature rise. In addition, accurately 
measuring the internal temperature in real time during treatment 
remains a technical challenge. There are also concerns about the 
materials used. Some nanoparticles can be toxic, especially if they 
are not biocompatible or if they remain in the body for a long time. 
Their long-term effects are not fully understood, and there is still 
no standard for what types of particles, coatings, or doses should 
be used. Another limitation is efficiency. Not all nanoparticles pro-
duce sufficient heat, especially when limited by the safe range of 
magnetic fields that can be used in humans. Stronger fields can 
increase heating, but they risk causing harm, such as nerve stimu-
lation or tissue damage. From a clinical and practical perspective, 
magnetic hyperthermia is not yet widely available. The equipment 
is expensive, clinical trials are limited, and few nanoparticle for-

Table 3.  Limitations and cutting-edge solutions achieved with the combinations of different nanocarriers with VLPs

Strategy Problems solved Remainder challenges Ref

VLP + Drug Enhanced drug specificity towards the tumoral tissue. Payload capacity, Low cell uptake, rapid 
clearance, pre-existing immunity, difficulty 
in cross biological barriers (BBB) and pen-
etrate solid tumors and physical instability.

206

VLP + micro-
motors

Enhanced distribution and delivery of the payload. NP Agregation 266

VLPs of plant 
origin

Evade immune neutralization, cost- effec-
tive and environmentally sustainable

Weak and transient immunologi-
cal responses (IgG and IgE)

267

VLP + GoldNp Enhanced photothermal efficiency using plasmon 
nanobubles (potential to induce transient BBB opening)

N.D 268

VLP + drug 
+ GoldNp

Enhanced drug delivery N.D 270

VLP + Metalic NPs Enhanced physical stability of the VLPs N.D 269

VLP + Mag-
netic NP

Enhanced payload capacity; Enhanced bio-
compatibility of magnetic NPs

Irregular aggregates and a large 
fraction of empty capsids

271,272

VLP + Silica NP 
(biomimetic)

Enhanced silica NP´cell uptake, improved im-
mune Responses against Cancer

N.D. 273

IgE, immunoglobulin E; N.D., not detected or not discussed; NP, nanoparticle; VLP, virus-like particle.
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mulations have been approved for routine use. It is also primarily 
suited for more localized tumors, which limits its use in the treat-
ment of disseminated or metastatic cancers.

Despite its challenges and limitations, the technique offers a 
fundamentally different mechanism of action than biochemical or 
molecular approaches. This makes it particularly useful for over-
coming certain forms of drug resistance and for treating tumors 
that are less responsive to traditional therapies. As demonstrated, a 
major advantage lies in its strong potential for synergistic use with 
other treatment modalities. When combined with chemotherapy or 
radiotherapy, magnetic hyperthermia can enhance therapeutic out-
comes by sensitizing tumor cells, increasing drug uptake, improv-
ing tissue oxygenation, and activating temperature-sensitive drug 
delivery systems. This multimodal capability makes it a versatile 
tool in personalized cancer therapy. In addition, the repeatability 
of magnetic hyperthermia treatments, made possible by the per-
manent presence of nanoparticles and the non-invasive nature of 
magnetic field application, adds a practical dimension to its appeal. 
Patients can undergo multiple treatment sessions without the need 
for additional invasive procedures or systemic drug administration.

In summary, while magnetic hyperthermia has real potential, 
issues related to targeting, control, safety, efficiency, and clini-
cal readiness need to be addressed before it becomes a standard 
cancer therapy.

The application of VLPs faces several challenges, such as the 
complexity of large-scale production with high purity and stability. 
The variation in the immunogenicity of VLPs may affect their ef-
ficacy, while improvements in surface modifications, with special 
focus on tumor neo-antigens, may be considered to ensure efficient 
delivery to cancer cells, minimizing uptake by healthy tissues. 
Among magnetic hyperthermia challenges, there are difficulties 
in controlling heat distribution in target tissues, which can lead 
to damage to healthy cells, tumor heterogeneity and variations in 
nanoparticle concentration, and the development of nanoparticles 
with optimized magnetic properties, capable of generating suffi-
cient heat in clinically acceptable magnetic fields.

Conclusions
Nanoparticles-based anticancer drug delivery improves cancer 
treatment, but tumors such as gliomas, imposes challenges that re-
quire alternative approaches. Even though intratumoral injection 
of nanoparticles to deliver drugs, therapeutic molecules or induce 
hyperthermia, improved the response to treatment, variable drug 
distribution within the tumor and potential leakage into surround-
ing non-tumoral tissue, uneven heat distribution (for hyperther-
mia), may reduce efficiency and increase toxicity.

The targeting capacity of VNPs and VLPs dramatically reduced 
toxicity and improved the antitumor response. The approval of 
VLPs for prophylactic vaccines and for cancer treatment, such as 
melanoma and breast cancer, has proven the success of this ap-
proach.

However, VLPs as monotherapy are less effective than when 
combined with conventional immunotherapy. Furthermore, the 
complex production of VLPs limits its scalability. Drug-loading 
efficiency, expensive cell culture systems, purification steps, 
batch-to-batch variability, and structural stability remain signifi-
cant issues.

Thus, associating the targeting capacity of VNPs and VLPs with 
the efficiency of traditional drugs, immunotherapy, photothermal, 
gene therapies, and other nanocarriers may improve the results, 
leading to a concentrated effort to optimize VNPs and VLPs pro-

duction, enhancing technical and economic viability, even though 
most of the optimization studies and their outcomes remain in the 
pre-clinical stage.
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